所在位置: 首页> 经典案例> 行业应用>

行业应用:深冷处理提高工件的冲击韧性

日期:2024-04-26 17:04
浏览次数:0
摘要:<p class="NewStyle17" style="margin-left:0pt;white-space:normal;"> <br /> </p> <p class="MsoNormal" style="margin-left:-0.1000pt;text-indent:-20.9000pt;text-align:center;"> 高速钢冷作模具深冷处理及应用 </p> <p class="MsoNormal" style="margin-left:-0.1000pt;text-indent:-20.9000pt;text-align:center;"> 机械0402&nbsp;&nbsp;贺建龙&nbsp;&nbsp;&nbsp;20045475 </p> <p class="MsoNormal" style="text-indent:28.0000pt;"> 摘要:指出了对高速钢采用-196℃液氮深冷处理可使组织发生明显变化,有效促使残留奥氏体向马氏体转变及超细碳化物的析出,使模具获得较佳的综合力学性能,深冷处理后高速钢模具的使用寿命较常规热处理提高三倍以上,具有十分重要的使用价值。<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;关键词:&nbsp;高速钢&nbsp;,模具&nbsp;,残留奥氏体,超细碳化物&nbsp;,使用寿命。 </p> <p class="MsoNormal"> 一、深冷处理法原理及工艺过程<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1)深冷处理后的组织转变。<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;经深冷处理的淬火高速钢不但引起了奥氏体转变,同时也引起了马氏体转变。过去几十年来强调的是残余奥氏体转变,马氏体分解这一新发现可以看作近年来高速钢深冷处理研究的新进展。<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;一般认为钢中残留较多的奥氏体是有害的,会降低钢的硬度、耐磨性及使用寿命,还使许多物理性能特别是热性能和磁性下降。试验证明:采用深冷处理可使钢中残留奥氏体降至*低极限,由表可以看出W18Cr4V高速钢经淬火、回火后,深冷处理可以使回火后的残留奥氏体量降低24%。 </p> <p class="MsoNormal" style="text-indent:21.1000pt;"> 不同处理工艺对W18Cr4V钢残留奥氏体的影响(体积百分数%)&nbsp; </p> <table class="MsoNormalTable" style="width:465pt;"> <tbody> <tr> <td width="314" valign="center" style="border:0.7500pt outset windowtext;"> <p class="MsoNormal" style="text-align:center;"> <span style="font-family:宋体;font-size:10.5000pt;">热处理工艺</span><span style="font-family:宋体;font-size:10.5000pt;"></span> </p> </td> <td width="305" valign="center" style="border:0.7500pt outset windowtext;"> <p class="MsoNormal" style="text-align:center;"> <span style="font-family:宋体;font-size:10.5000pt;">残留奥氏体A</span><span style="font-family:宋体;font-size:10.5000pt;vertical-align:sub;">R</span><span style="font-family:宋体;font-size:10.5000pt;"></span> </p> </td> </tr> <tr> <td width="314" valign="center" style="border:0.7500pt outset windowtext;"> <p class="MsoNormal" style="text-align:center;"> <span style="font-family:宋体;font-size:10.5000pt;">1280℃淬火+500℃×1h×3次回火</span><span style="font-family:宋体;font-size:10.5000pt;"></span> </p> </td> <td width="305" valign="center" style="border:0.7500pt outset windowtext;"> <p class="MsoNormal" style="text-align:center;"> <span style="font-family:宋体;font-size:10.5000pt;">10</span><span style="font-family:宋体;font-size:10.5000pt;"></span> </p> </td> </tr> <tr> <td width="314" valign="center" style="border:0.7500pt outset windowtext;"> <p class="MsoNormal" style="text-align:center;"> <span style="font-family:宋体;font-size:10.5000pt;">-196℃深冷处理</span><span style="font-family:宋体;font-size:10.5000pt;"></span> </p> </td> <td width="305" valign="center" style="border:0.7500pt outset windowtext;"> <p class="MsoNormal" style="text-align:center;"> <span style="font-family:宋体;font-size:10.5000pt;">7.6</span><span style="font-family:宋体;font-size:10.5000pt;"></span> </p> </td> </tr> </tbody> </table> <p class="p" style="text-indent:21.0000pt;background:#FFFFFF;"> 前苏联列宁格勒工业大学研究了-196℃液氮中15min的深冷处理对高速钢转变的影响,试验结果表明,-70℃――-75℃到-130℃――&nbsp;-140℃范围内进行深冷处理时发生马氏体转变,当冷却到-196℃时转变停滞。在-90℃――-120℃温度范围内,出现试样容积的见效,这证明马氏体已部分分解并在位错面上析出了碳原子和形成了超显微碳化物。可见,深冷处理使高速钢析出碳化物的颗粒明显增多,且弥散均匀,W18Cr4V钢经深冷处理后碳化物颗粒约增加8%,W6Mo5Cr4V2钢析出的碳化物颗粒约增加76%,基体组织亦明显细化。&nbsp;<br /> &nbsp;&nbsp;&nbsp;(2)深冷处理对高速钢性能的影响。<br /> &nbsp;&nbsp;&nbsp;&nbsp;深冷处理过程中,大量的残留奥氏体转变为马氏体,特别是过饱和的亚稳定马氏体在从-196℃至室温过程中会降低过饱和度,析出弥散、尺寸仅为20―60A并与基体保持共格关系的超微细碳化物,可以使马氏体晶格畸变减小,微观应力降低,而细小弥散的碳化物在材料塑性变形时可以阻碍位错运动,从而强化基体组织。同时由于超微细碳化物颗析出,均匀分布在马氏体基体上,减弱了晶界催化作用,而基体组织的细化既减弱了杂质元素在晶界的偏聚程度,又发挥了晶界强化作用,从而改善了高速钢的性能,使硬度、冲击韧性和耐磨性都显著提高。模具硬度高,其耐磨性也就好,如硬度由60HRC提高至62-63HRC,模具耐磨性增加30%―40%。<br /> &nbsp;&nbsp;&nbsp;(3)高速钢模具深冷处理工艺过程。<br /> &nbsp;&nbsp;&nbsp;&nbsp;为防止高速钢模具(特别是形状复杂的模具)在深冷处理中发生断裂和变脆,建议淬火后的高速钢模具在560℃回火1h再进行液氮深冷处理,然后在400℃进行*终回火30-60min,这种热处理工艺不但可以防止模具断裂和脆化,而且可以提高模具寿命1.5―2倍。<br /> &nbsp;&nbsp;&nbsp;&nbsp;高速钢模具深冷处理工艺过程为:模具除油垢→放入保温罐中→少量多次注入液氮→保温4h→取出模具→400℃回火45min。<br /> 二、高速钢模具深冷处理应用实例。<br /> &nbsp;&nbsp;&nbsp;(1)凸模:汽车厂的高速钢凸模,未经深冷处理时只能使用10万次,而采用液氮经-196℃×4h深冷处理后再400回火,使用寿命提高到130万次。<br /> &nbsp;&nbsp;&nbsp;(2)冲压凹模:生产使用结果表明,深冷处理后产量提高二倍多。<br /> &nbsp;&nbsp;&nbsp;(3)硅钢片冷冲模:为降低模具深冷处理后的脆性和内应力,将深冷处理与中温回火相配合,可改善模具抗破坏性及其它综合性能,模具的刃磨寿命提高3倍以上,稳定在5―7万冲次。<br /> 三、结束语。<br /> &nbsp;&nbsp;&nbsp;(1)高速钢深冷处理过程中,由于残留奥氏体向马氏体以及超细碳化物的析出,硬度、耐磨性、冲击韧性、红硬性得到提高。<br /> &nbsp;&nbsp;&nbsp;(2)作为一种新工艺深冷处理应用在高速模具钢的热处理中,可显著提高模具的使用寿命,具有很大的实用价值。 </p> <p> <br /> </p>


高速钢冷作模具深冷处理及应用

机械0402  贺建龙   20045475

摘要:指出了对高速钢采用-196℃液氮深冷处理可使组织发生明显变化,有效促使残留奥氏体向马氏体转变及超细碳化物的析出,使模具获得较佳的综合力学性能,深冷处理后高速钢模具的使用寿命较常规热处理提高三倍以上,具有十分重要的使用价值。
     关键词: 高速钢 ,模具 ,残留奥氏体,超细碳化物 ,使用寿命。

一、深冷处理法原理及工艺过程
     (1)深冷处理后的组织转变。
     经深冷处理的淬火高速钢不但引起了奥氏体转变,同时也引起了马氏体转变。过去几十年来强调的是残余奥氏体转变,马氏体分解这一新发现可以看作近年来高速钢深冷处理研究的新进展。
     一般认为钢中残留较多的奥氏体是有害的,会降低钢的硬度、耐磨性及使用寿命,还使许多物理性能特别是热性能和磁性下降。试验证明:采用深冷处理可使钢中残留奥氏体降至*低极限,由表可以看出W18Cr4V高速钢经淬火、回火后,深冷处理可以使回火后的残留奥氏体量降低24%。

不同处理工艺对W18Cr4V钢残留奥氏体的影响(体积百分数%) 

热处理工艺

残留奥氏体AR

1280℃淬火+500℃×1h×3次回火

10

-196℃深冷处理

7.6

前苏联列宁格勒工业大学研究了-196℃液氮中15min的深冷处理对高速钢转变的影响,试验结果表明,-70℃――-75℃到-130℃―― -140℃范围内进行深冷处理时发生马氏体转变,当冷却到-196℃时转变停滞。在-90℃――-120℃温度范围内,出现试样容积的见效,这证明马氏体已部分分解并在位错面上析出了碳原子和形成了超显微碳化物。可见,深冷处理使高速钢析出碳化物的颗粒明显增多,且弥散均匀,W18Cr4V钢经深冷处理后碳化物颗粒约增加8%,W6Mo5Cr4V2钢析出的碳化物颗粒约增加76%,基体组织亦明显细化。 
   (2)深冷处理对高速钢性能的影响。
    深冷处理过程中,大量的残留奥氏体转变为马氏体,特别是过饱和的亚稳定马氏体在从-196℃至室温过程中会降低过饱和度,析出弥散、尺寸仅为20―60A并与基体保持共格关系的超微细碳化物,可以使马氏体晶格畸变减小,微观应力降低,而细小弥散的碳化物在材料塑性变形时可以阻碍位错运动,从而强化基体组织。同时由于超微细碳化物颗析出,均匀分布在马氏体基体上,减弱了晶界催化作用,而基体组织的细化既减弱了杂质元素在晶界的偏聚程度,又发挥了晶界强化作用,从而改善了高速钢的性能,使硬度、冲击韧性和耐磨性都显著提高。模具硬度高,其耐磨性也就好,如硬度由60HRC提高至62-63HRC,模具耐磨性增加30%―40%。
   (3)高速钢模具深冷处理工艺过程。
    为防止高速钢模具(特别是形状复杂的模具)在深冷处理中发生断裂和变脆,建议淬火后的高速钢模具在560℃回火1h再进行液氮深冷处理,然后在400℃进行*终回火30-60min,这种热处理工艺不但可以防止模具断裂和脆化,而且可以提高模具寿命1.5―2倍。
    高速钢模具深冷处理工艺过程为:模具除油垢→放入保温罐中→少量多次注入液氮→保温4h→取出模具→400℃回火45min。
二、高速钢模具深冷处理应用实例。
   (1)凸模:汽车厂的高速钢凸模,未经深冷处理时只能使用10万次,而采用液氮经-196℃×4h深冷处理后再400回火,使用寿命提高到130万次。
   (2)冲压凹模:生产使用结果表明,深冷处理后产量提高二倍多。
   (3)硅钢片冷冲模:为降低模具深冷处理后的脆性和内应力,将深冷处理与中温回火相配合,可改善模具抗破坏性及其它综合性能,模具的刃磨寿命提高3倍以上,稳定在5―7万冲次。
三、结束语。
   (1)高速钢深冷处理过程中,由于残留奥氏体向马氏体以及超细碳化物的析出,硬度、耐磨性、冲击韧性、红硬性得到提高。
   (2)作为一种新工艺深冷处理应用在高速模具钢的热处理中,可显著提高模具的使用寿命,具有很大的实用价值。


苏公网安备 32021402000981号

< a href=' '>在线客服
< a href='https://en.live800.com'>live chat